Gaussian kernel in quantum learning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Kernel in Quantum Paradigm

Gaussian kernel is a very popular kernel function used in many machine learning algorithms, especially in support vector machines (SVM). For nonlinear training instances in machine learning, it often outperforms polynomial kernels in model accuracy. The Gaussian kernel is heavily used in formulating nonlinear classical SVM. A very elegant quantum version of least square support vector machine w...

متن کامل

Learning Rates of lq Coefficient Regularization Learning with Gaussian Kernel

Regularization is a well-recognized powerful strategy to improve the performance of a learning machine and l(q) regularization schemes with 0 < q < ∞ are central in use. It is known that different q leads to different properties of the deduced estimators, say, l(2) regularization leads to a smooth estimator, while l(1) regularization leads to a sparse estimator. Then how the generalization capa...

متن کامل

Asymmetric kernel in Gaussian Processes for learning target variance

This work incorporates the multi-modality of the data distribution into a Gaussian Process regression model. We approach the problem from a discriminative perspective by learning, jointly over the training data, the target space variance in the neighborhood of a certain sample through metric learning. We start by using data centers rather than all training samples. Subsequently, each center sel...

متن کامل

Some Properties of the Gaussian Kernel for One Class Learning

This paper proposes a novel approach for directly tuning the gaussian kernel matrix for one class learning. The popular gaussian kernel includes a free parameter, σ, that requires tuning typically performed through validation. The value of this parameter impacts model performance significantly. This paper explores an automated method for tuning this kernel based upon a hill climbing optimizatio...

متن کامل

Scalable Log Determinants for Gaussian Process Kernel Learning

For applications as varied as Bayesian neural networks, determinantal point processes, elliptical graphical models, and kernel learning for Gaussian processes (GPs), one must compute a log determinant of an n× n positive definite matrix, and its derivatives – leading to prohibitive O(n) computations. We propose novel O(n) approaches to estimating these quantities from only fast matrix vector mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Quantum Information

سال: 2020

ISSN: 0219-7499,1793-6918

DOI: 10.1142/s0219749920500069